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SUMMARY 

A magnetic suspension and positioning system consistent with 

the original requirements is shown to be feasible. Satisfactory 

conceptual designs include: superconductive and permanent magnet 

model cores and support solenoids of either superconductive, 

cryogenic or room temperature windings. The selected system 

consists of a model with a permanent magnet core or a super- 

conductive core which is positioned by five superconductive 

support solenoids. 

Conceptual design and trade-off analyses lead to meeting the 

original requirements, except as noted in Part I, Requirements. 
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I. REQUIREMENTS 

The original requirement goals are listed in (parenthesis) 

along with the actual achieved specifications, all in the 

language 

1. 

2. 

3. 

4 .  

5. 

6 .  

of the statement of work. 

The candidate magnetic suspension and positioning 

system - has (shall have) the suspension coils mounted in 

the floor of the facility. All coils do (must) reside 

in a space 96 in. dia. by 40  An. deep (not to exceed 

8 ft. square by 8 ft. deep). 

The minimum gap between centerline of the suspended 

model and the top of the suspension coil housing is 

(shall be) 36 in. free and clear. 

The maximum model weight - is (shall be) 15 pounds plus 

the on-board core magnet system. 

The core magnet - is (shall be) 12 in. long by 4 in. 

diameter . 
The x axis (roll), the y axis (pitch) and the z axis 

(yaw) are as specified. 

The candidate system shall be capable of suspension 

through an angle of 360 degrees ( 4 0  degrees) yaw angle 

- 

- 

with an accuracy of 2 0 . 0 4  degrees (20.002 degrees). An 

improvement on the yaw angle accuracy would require 

improvement in sensor position location and in magnet 

turn location maintenance. 



7. The system shall provide accuracies of f0.04 degrees 

(20.002 degrees) in pitch and yaw and f0.003 (fO.001) 

inches in translation. 

The operation cycle can be continuous (one hour per day 

required) , 

8 .  

Table 1-1 summarizes the above specifications. 

REPULSIVE FORCE SUPPORT SYSTEM 

SPECIFICATIONS 

- MODEL MAGNET 4"OD x 12" L CYLINDER 

- MINIMUM CLEARANCE OF 36" BELOW MODEL 

- 360' YAW POSITIONING ANGLE 

- MODEL CONTROL ACCURACY 20.04 DEGREE IN PITCH AND YAW, 
20.003" IN TRANSLATION 

- MODEL WEIGHS 15 lb, + MAGNET WEIGHT 

- POSITIONING AND CONTROL SYSTEM IS WITHIN A 96"OD X 40" 
DEEP CYLINDER 
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11. INTRODUCTION 

The model core choices in Chapter I11 are between a 

superconductive coil with an optimized Q/M = 1350 Am/kg and a 
permanent magnet core at Q/M = 335 Am/kg, where M is the total 
magnet system mass. These cores are suitable for an external 

magnet levitation system, such as shown in Fig. 11-1. The sketch 

is for a superconducting core solenoid and five superconducting 

support coils. 

The system options in Chapter IV are between superconducting 

or permanent magnet model cores and the five support coils of 

superconductive or copper turns. The copper coils could be water 

cooled or liquid nitrogen cooled. There appears to be no value 

to the water cooled option. 

The coil design in Chapter V for the five support system 

coils is dominated by the ac losses generated during semi- 

continuous corrective pulsing. In Chapter VI a simulation system 

is used to demonstrate the angle and position history of the 

model coil subject to a corrective positioning sequence that is 

set to cancel calculated approximate momenta. The calculated 

momenta are based on the discrimination of the sensing system. 

The accuracies in Table 1-1 are the result of the simulation 

studies . 
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Figure 11-1. Superconducting ( S / C )  Model--S/C Magnet Support 
2 System at 5 kA/cm . 
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I11 . SYSTEM CONFIGURATION 

111.1. Model Core. 

The model core size envelope is 30.48 cm (12") long and 

10.16 cm ( 4 " )  OD. The model core can be either a permanent 

magnet of 1.2 tesla average remnant magnetism or a superconduct- 

ing coil with or without a holmium core, in a liquid helium 

dewar . 

111.1.1. Superconducting Option. 

Epoxy-impregnated coils with current densities in excess of 

20 kA/cm2 at fields of 6-9 tesla may be used. Such coils do not 

contain much copper or cooled surfaces, and their ability to 

tolerate disturbances is limited to the adiabatic heat capacity 

of the conductor material. However, the absence of large amounts 

of copper and helium in the windings allows such coils to operate 

at current densities up to ten times as large as those for 

cryostable coils, which is needed for model cores. 

Higher values of magnetic moments may be achieved through 

using holmium core if space permits. Holmium has superior 

magnetic properties at 4 . 2  K with a saturation magnetic moment of 

3.9 tesla. Table 111-1 lists the magnetization of holmium at 

4.2K [1,2]. 
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Table 111-1. 

Magnetization (T) 0 1.6 2.48 2.9 2.98 3.12 3.25 3.35 3.7 

The total magnetic pole strength per unit mass vs. design 

maximum field, B, and operating current density, J, are listed in 

Tables 111-2 and 111-3 with and without holmium core. As shown, 

the presence of holmium does not add to the values of Q/M sig- 

nificantly, since there is limited space in the core. Table 

111-4 lists the specifications of the model coil design. A gross 

current density of 30 kA/cm2 at 6 T field with no holmium core is 

selected. 
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Table 111-2. 

Model Core Magnetic Pole Strength per Unit Mass Q/M vs. Design 
Maximum Field, B, and Operating Current Density, J. All cases 
have OD = 0.09 m, ID 2 0.05 m, and mandrel thickness = 1.27 nun. 
MH is the holmium magnetization, RI is the winding inner radius, 
QM is the winding pole strength, QH is the holmium pole strength, 
and Q is the sum of QM + QH. The mass M is the mass of the 
winding and holmium in addition to 10 kg f o r  the model, dewar, 
and helium mass. ................................................................. ................................................................. 

4.00 0.20E+09 3.23 0.29E-01 0.12E+04 0.14E+05 0.151E+05 0.925E+03 
4.00 0.30E+09 3.23 0.34E-01 0.383+04 0.16E+05 0.197E+05 0.118E+04 
4.00 0.40E+09 3.23 0.37E-01 0.53E+04 0.17E+05 0.2228+05 0.132E+04 
4.00 0.50E+09 3.23 0.39E-01 0.623+04 0.18E+05 0.237E+05 0.140E+04 
4.00 0.60E+09 3.23 0.40E-01 0.69E+04 0.18E+05 0.248E+05 0.146E+04 

5.00 0.20E+09 3.46 0.25E-01 0.00E+00 O.l6E+05 0.1583+05 0.9743+03 
5.00 0.30E+09 3.46 0.32E-01 0.26E+04 0.19E+05 0.212E+05 0.129E+O4 
5.00 0.40E+09 3.46 0.35E-01 0.453+04 0.20E+05 0.2463+05 0.147E+04 
5.00 0.50E+09 3.46 0.37E-01 0.57E+04 0.21E+05 0,268E+05 0.1598+04 
5.00 0.60E+09 3.46 0.38E-01 0.653+04 0.22E+05 0.283E+05 0.167E+04 

6.00 0.20E+09 3.63 0.21E-01 0.00E+00 0.17E+05 0.171E+05 0.107E+04 
6.00 0.30E+09 3.63 0.29E-01 0.13E+04 0.21E+05 0.222E+05 0.136E+04 
6.00 0.40E+09 3.63 0.33E-01 0.35E+04 0.23E+05 0.265E+05 0.160E+04 
6.00 0.50E+09 3.63 0.35E-01 0.49E+04 0.24E+05 0.293E+05 0.175E+04 
6.00 0.60E+09 3.63 0.37E-01 0.59E+04 0.25E+05 0.313E+05 0.186E+04 

7.00 0.20E+09 3.75 0.17E-01 0.00E+00 0.18E+05 0.180E+05 0.113E+04 
7.00 0.30E+09 3.75 0.26E-01 0.76E+02 0.233+05 0.229E+05 0.141E+04 
7.00 0.40E+09 3.75 0.31E-01 0.258+04 0.26E+05 0.281E+05 0.171E+04 
7.00 0.50E+09 3.75 0.34E-01 0.41E+04 0.27E+05 0.315E+05 0.190E+04 
7.00 0.60E+09 3.75 0.36E-01 0.538+04 0.29E+05 0.3393+05 0.203E+04 

8.00 0.20E+09 3.82 0.13E-01 0.00E+00 0.19E+05 0.1863+05 0.117E+04 
8.00 0.30E+09 3.82 0.24E-01 0.00E+00 0.24E+05 0.244E+05 0.151E+04 
8.00 0.40E+09 3.82 0.29E-01 0.14E+04 0.28E+05 0.293E+05 0.179E+04 
8.00 0.50E+09 3.82 0.32E-01 0.32E+O4 0.30E+05 0.333E+05 0.2023+04 
8.00 0.60E+09 3.82 0.34E-01 0.458+04 0.32E+05 0.3628+05 0.218E+04 

9.00 0.20E+09 3.83 0.92E-02 0.00E+00 0.19E+05 0.189E+05 0.120E+04 
9.00 0.30E+09 3.83 0.21E-01 0.00E+00 0.26E+05 0.257E+05 0.160E+04 
9.00 0.40E+09 3.83 0.27E-01 0.40E+03 0.30E+05 0.302E+05 0.186E+04 
9.00 0.50E+09 3.83 0.31E-01 0.23E+04 0.33E+05 0.349E+05 0.212E+04 
9.00 0.60E+09 3.83 0.33E-01 0.37E+04 0.35E+05 0.382E+05 0.231E+04 
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Table 111-3. 

Model Core Magnetic Pole Strength, per Unit Mass Q/M vs. Design 
Maximum Field, B, and Operating Current Density J. A l l  cases 
have OD = 0.09 m. There is no holmium mandrel in the core. The 
mass M is the mass of the winding in addition to 10 kg for the 
model, dewar and helium mass. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.00 0.20E+09 3.23 0.29E-01 0.00E+00 0.14E+05 0.139E+05 0.899E+03 
4.00 0.30E+09 3.23 0.34E-01 0.00E+00 0.16E+05 0.159E+05 0.114E+04 
4.00 0.40E+O9 3.23 0.37E-01 0,00E+00 0.17E+05 0.169E+05 0.129E+04 
4.00 0.50E+09 3.23 0.39EyOl 0.00E+00 0.18E+05 0.175E+05 0.140E+04 
4.00 0.60E+09 3.23 0.40E-01 0.00E+00 0.18E+05 0.180E+05 0.148E+04 

5.00 0.20E+09 3.46 0.25E-01 0.00E+00 0.16E+05 0.158E+05 0.955E+03 
5.00 0.30E+09 3.46 0.32E-01 0.00E+00 0.19E+05 0.186E+05 0.126E+04 
5.00 0.40E+09 3.46 0.35E-01 0.00E+00 0.20E+05 0.201E+05 0.147E+04 
5.00 0.50E+09 3.46 0.37E-01 0.00E+00 0.21E+05 0.211E+05 0.162E+04 
5.00 0.60E+09 3.46 0.38E-01 0.00E+00 0.223+05 0.2188+05 0.173E+04 

6.00 0.20E+09 3.63 0.21E-01 0.00E+00 0.17E+05 0.171E+05 0.985E+03 
6.00 0.30E+09 3.63 0.29E-01 0.00E+00 0.21E+05 0.209B+05 0.135E+04 
6.00 0.40E+09 3.63 0.33E-01 0.00E+00 0.23E+05 0.230E+05 0.160E+04 
6.00 0.50E+09 3.63 0.35E-01 0.00E+00 0.24E+05 0.2448+05 0.179E+04 
6.00 0.60E+09 3.63 0.37E-01 0.00E+00 0.25E+05 0.253E+05 0.194E+04 

7.00 0.20E+09 3.75 0.17E-01 0.00E+00 0.18Et05 0.180E+05 0.997E+03 
7.00 0.30E+09 3.75 0.26E-01 0,00E+00 0.23E+05 0.228E+05 0.141E+04 
7.00 0.40E+09 3.75 0.31E-01 0.00E+00 0.26E+05 0.256Ec05 0.171E+04 
7.00 0.50E+09 3.75 0.34E-01 0.00E+00 0.27E+05 0.2743+05 0.194E+04 
7.00 0.60E+09 3.75 0.3GE-01 0.00E+00 0.29&+05 0.286Ec05 0.212E+04 

8.00 0.20E+09 3.82 0.13E-01 0.00E+00 0.19E+05 0.186E+05 0.998E+03 
8.00 0.30E+09 3.82 0.24E-01 0.00E+00 0.24E+05 0.244E+05 0.145E+04 
8.00 0.40E+09 3.82 0.29E-01 0.00E+00 0.28E+05 0.2793+05 0.180E+04 
8.00 0.50E+09 3.82 0.32E-01 0.00E+00 0.30E+05 0.301E+05 0.206E+04 
8.00 0.60E+09 3.82 0.34E-01 0.00E+00 0.32E+05 0.317E+05 0.228E+04 

9.00 0.20E+09 3.83 0.92E-02 0.00E+00 0.19E+05 0.189E+05 0.993EL03 
9.00 0.30E+09 3.83 0.21E-01 0.00E+00 0.26E+05 0.2578+05 0.148E+O4 
9.00 0.40E+09 3.83 0.27E-01 0.00E+00 0.30E+05 0.298Et05 0.186Ec04 
9.00 0.50E+09 3.83 0.31E-01 0.00E+00 0.33E+05 0.326E+05 0.216E+04 
9.00 0.60E+09 3.83 0.33E-01 O.OOE+.OO 0.35E+05 0.345E+05 0.241E+04 
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Table 111-4. 

Winding outer radius (cm) 
Winding inner radius (cm) 
Mandrel1 thickness (an) 
Winding length (cm) 
Winding current density (kA/cm2)  
Winding maximum field (T) 

4.5 
2.9 
0.127 

22.86 
30.00 
6.0 

111.1.2. Permanent.Magnet Material Option. 

A new superior permanent magnet material Nd15Fe77B8 is 

planned-for the model core [3,4]. The magnetic properties are 

listed in Table 111-5. 

Table 111-5. 

Magnetic Properties of ND15Fe77B8 Magnetic Material. 

Br Hc (BH) max Tc 
(TI (kA/m) (kJ/m3) (K) 

Nd15Fe77B8 1.23 960 290 585 

Nd15 (FeO .gcoO. 1) 77B8 1.23 800 290 670 

Nd15 (FeO. gco0. 2) 77B8 1.21 820 260 740 
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As shown in Fig. 111-1, the new permanent magnet material 

has large values of Mr (residual magnetism) and Hc (demagnetiza- 

tion critical field). Mr stays well above 1.2 tesla for most of 

the demagnetizing field and well over 1.15 tesla up to Hc = 960 

kA/m (1.21 tesla). 

of the model core are listed in Table 111-6. 

With Mr = 1.2 tesla, the magnetic properties 

1 '  - 

- 

0.8 

0.4 

Ir I 

RESiOUAL 
MAGNETIZATION, 
M(T)  

W 

-1600 -1200 -800 -400 0 
DEMAGNETIZ I NG FIELD 

H (kA/m) 

Figure 111-1. Demagnetized curve of Nd13.5Dy1.5Fe77B8 sintered 
magnet 

Table 111-6. 

Model Core Coil Specifications (Permanent Magnet). 

Remnant magnetization (T) ....... .................... 1.2 
................................................................. ................................................................. 

Core length (cm) ................................... 30.48 
Core diameter (cm) .................................. 10.16 
Core mass (kg) ..................................... 16.41 
Model mass (kg) ..................................... 6.7 
Total mass, M (kg) ................................. 23.11 

Q/M (Am/kg) ....................................... 335. 
Pole strength, Q (Am) ............................... 7.742 x l o 3  

-10- 



111.2. Levitation Magnet System. 

The system under study is to levitate, position and control 

a 15 lb. model. The model is to be suspended 36" above the 

cryostat top plate. The array of magnets will control the 

position of the model in 5 degrees of freedom, namely the x, y, z 

displacements and the yaw and pitch rotations. Model rolling is 

controlled with eccentric weights. 

111.2.1. Levitation Magnet System Confiquration. 

The system consists 05 "n" vertical solenoids arranged 

around the system center. The tops of the magnets are located as 

close as possible to the table surface. Because the model is 

allowed to assume any position between 0 and 360 degrees in the 

yaw direction, it is reasonable to assume that the magnet system 

should be arranged symmetrically around the vertical z-axis. The 

magnets may be arranged in one or more rings. Furthermore, each 

ring may perform a separate function. For example, a magnet 

array in one circle may be responsible for levitation and posi- 

tioning while another array may be responsible for control and 

stability. 

The first object of this study is to find the currents in 

the magnet array that satisfy a required FZ (lift), and control 

F T and TZ at any position for the model. Since the Fx' y' y 
number of forces and torques is 5, there is a need for at least 5 

solenoids in the magnet array. A larger number of coils allows 

other constraints which depend on the nature of the system. For 

a superconducting magnet system, the minimum ampere-meters is 

-11- 



usually desired; while for resistive coils the criteria may be 

minimum ohmic heat losses in the coils. In the next section the 

procedure to optimize these two systems is analyzed. 

111.2.2. Magnet System Optimization. 

For both superconductive and resistive systems the 

optimization problem may be divided into two parts: 

find the optimum magnet dimensions and secondly to find the 

first to 

optimum current distribution in the magnet array that satisfies 

the force constraints. First, an approximate formula is used to 

derive closed form expressions for optimum magnet dimensions. 

Second, using these expressions for the dimensions, an "exact" 

approach is used to calculate the optimum current distribution in 

the magnet array. 

111.2.2.1. Superconducting Maqnets Optimum Size. 

The main function of the magnet array is to produce a lift 

force on the model. The lift force on the model due to one 

magnet in the array may be approximated by 

= KQ1 ( n / 3 )  Jb3 (1-a) - (H+L)-31 FZ 

where 

K = constant for given locations of the magnet and the model 
Q1 = magnetic pole strength of the model 
J = current density in the magnet 
b = outer radius of the magnet 
a = inner to outer diameter ratio of the coil 
H = vertical distance between top of coil and center line 

L = length of coil . 
of model, and 
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From Equation 1, we may define Fo to be: 

Fo f (FZH3/KQ1) = (m/3) Jb” (1-a”) x I where 

= 1 - (I+~)-~ 
x = L/H . 

The ampere-meters of the coil are 

A = mJbaL(1-a2). 

At any location the minimum of the ampere-meters A subject to the 

constraint Fo = constant is achieved when the following condi- 

tions are met: 

b is as large as possible for this location, and ( 2 )  

a = Jm+(1/2) - 1/2 , and ( 3  1 

m = 2/(x3+4xa+6x+1) . ( 4 )  

111.2.2.2. Superconducting Magnets Optimum Current 
Distribution. 

The forces and torques acting on the model due to the magnet 

array system may be presented as 

{Fi} = [S..] {I.} 
1 3  3 

where {Fi) is the force vector, i=1,5 

[S. . I  is a pseudo-stiffness matrix whose elements 

Sij represent the force on the model in the 

ith direction due to a unit current in the 

1 3  

jth coil . 
The ampere-meters of the magnet array is 

CA = ClI.R.1 
j 3 3  I j=l ,n 

(5) 

where I and R are the current and conductor length of the 
j j 

jth coil . 
For identical coils CA = R ZII.1 

j 3 

-13- 



j 
Equation 6 shows that for fixed coil dimensions, minimum CA 

occurs at minimum CIz . 
j 

Thus it is required to minimize C12 subject to the 
j 

constraints of Equation 5. 

Using Lagrange's approach, the problem reduces to minimizing 

an objective function G defined as 

where i = 1 to 5 

j = l t o n  

j 
This function has an optimum value at the set of currents I 

satisfied by the following (n+5) simultaneous equations: 

(aG/aI.) = 2 I. + C Xi C Sij = 0 

(aG/axi) = C Sij I 
3 3 

- Fi = o j 

j=l,n 

i=l, 5 

Arranging these equations in a matrix form we get 

where 

where [I] = identity matrix 
f > 

{XI = 

-14- 



{c’ = 

< 

/ \ 

0 

0 
> 

F1 

,F5, 
Manipulating Equation 8 and solving for the current 

distribution, we ,get 
T T -1 

‘‘j’nxl = [SI nx5 [” ’5x5 ‘Fi’5xl 
The elegance of equation (9) is that regardless of the 

number of magnets “n”, the matrix ,to be inverted is always 5x5. 

Solving Eq. (9) gives the current distribution in the magnet 

array that satisfies the force constraints and results in a 

minimum total ampere-meters in the coils. 

111.2.2.3. Resistive Magnets Optimum Size 

The power loss  P1 in one magnet in the array is 

= I2R = p ‘II J2b2L (l-a2), where p1 
J = the gross current density, and 

p = the effective resistivity. 

Minimizing the power dissipation subject to the force 

condition of Eq. (1) results in the’following conditions: 

b is as large as possible, 

a = 0.366 and 

L = 0.7373 H . 
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111.2.2.4. Resistive _. Magnets Optimum Current 
Distribution 

The total power dissipation in the coil array is 

P = CI.2R 
1 1  

j = l,n 

For identical magnets the resistance R is the same, j 
P = R C 1 2  

j 
where R is the resistance of one coil. 

Equation (13) shows that for an array of magnets with the 

same given dimensions, minimum power dissipation coincides with 

the minimum of CI 3. This is the same condition for minimum 

ampere-meters. Consequently, the current distribution given by 

equation (9) results in a minimum power dissipation in the magnet 

j 

array. 
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IV. SYSTEM OPTIONS 

The six combinations of superconducting or permanent model 

magnets with superconducting or copper levitation magnets are 

listed in Table IV-1. 

Table IV-1. 

Model Magnets Comment 

s/c 
P/M 
s/c 
PM 
s/c 
PM 

s/c 
s/c 
cu 
cu 
cu 
cu 

smallest magnets 
simple model 

1 LN cooled 
( 2magnets 

1 ( 2magnets 
H 0 cooled 

S/C 5 superconducting 
PM 5 permanent magnets 
Cu Z copper magnets 

IV.1. Superconducting Levitation Coils. 

The superconducting magnet array is optimized for minimum 

total ampere-meters. 

location radii for current densities ranging from 50 MA/m2 to 300 

Five and six arrays are studied at varying 

MA/m2. Table IV-2 lists magnet parameters for an S/C model core. 

The superconducting model in this table has a magnetic pole 

strength of 1350 Am/kg of total mass. 

this table are: 

The other parameters in 

NC = Number of coils in the array 

R = Location radius 

L, RI, RO = Optimum coil dimensions (I = inner, 0 = outer) 
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Table IV-2. 

Minimum Ampere-Meters S / C  Magnet Arrays 
for Levitation of an S/C Model. 

YODEL Q/M =. 1.350E+03 Am/KG Fx/n n/n FZ/U n/n m/U 
MODEL LENGTH = 3.000E-01 II .000E+00 .000E+00 1.000E+00 .000E+00 .000E+00 
MIN DISTANCE = 5.000E-02 m 

NC 

5 
5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 

6 
6 
6 
6 
6 
6 
6 
6 

6 
6 
6 
6 
6 
6 
6 
6 
6 

R L 

.bo0 ,924 

.b50 .387 

.SO0 .262 

.550 .204 
,600 .170 
.650 ,148 
.700 .133 
.7SO .122 
.EO0 ,114 

.bo0 ,459 

.450 .273 

.so0 .200 

.550 .162 

.600 .138 

.650 .122 

.700 .110 
,750 . l o 2  
.EO0 .096 

.450 ,758 

.so0 ,393 

.550 .280 

.600 .223 
,650 ,189 
.700 ,167 
.750 .152 
.EO0 ,141 

.bo0 1.349 

.450 .423 

.SO0 .277 

.550 .212 

.600 ,175 

.650 ,152 
,700 .136 
.750 .125 
.800 .117 

R I  Ro JMAX 

.069 .210 
,120 .240 
.160 ,269 
.195 .298 
.229 ,328 
,260 .357 
.291 .386 
.321 ,416 
,350 .445 

1 .SOOE+O7 
1 .SOOE+O7 
1.500E+07 
1.500E+07 
1.501E+O7 
1.500E+O7 
1.501E+07 

1.500E+07 
1 .SOlE+O7 

,097 .210 2.000E+07 
,140 .240 2.000E+O7 

.212 .298 2.001E+07 

.2b1 ,328 2.001E+O7 
,275 .357 2.001E+07 

,177 .269 2.001E+O7 

.306 .386 1.999E+07 
,335 ,416 2.001E+O7 
.364 .bb5 1.998E+07 ' 

.072 .200 l.SOOE+Ol 

.112 ,225 1.500E+O7 

.145 .250 1.500E+O7 

.17b ,275 l.S0OE+07 

.202 .300 1.500E+O7 

.228 .325 1.501E+O7 
,253 .350 1.500E+07 
.278 .375 1.500E+O7 

.Ob9 .175 2.000E+07 

.096 ,200 2.000E+O7 

.161 ,250 2.000E+07 

.190 .275 2.001E+07 

.217 ,300 2.000E+O7 

.243 .325 2.000E+O7 

.131 .225 2.000E+O7 

.268 .350 2.000E+07 
,293 .375 2.001E+O7 

BMAX 

2.54 
1.76 
1.34 
1.10 

.95 

.85 

.79 

.74 

.70 

2.42 
1.73 
1.36 
1.14 
1 .oo 

.91 

.84 

.80 

.76 

2.27 
1.70 
1.36 
1.16 
1.02 

.93 

.87 

.83 

3.13 
2.20 
1.69 
1.38 
1.19 
1.07 

.99 

.92 

.89 

ISTOT 

5.576E+06 
2.552E+06 
1.882E+06 
1.589E+06 
1. b38E+O6 
1.358E+O6 
1.323E+O6 
1.317E+O6 
1.334E+O6 

3.257E+06 
2.106E+06 
1.677E+06 
1. b64E+06 
1.350E+O6 
1.291E+06 
1.266E+06 
1.267E+06 
1.289E+06 

4. 939E+06 
2.793E+06 
2.168E+06 

1.736E+06 
1.667E+06 

1.658E+06 

1.881E+06 

1.643E+06 

9.523E+06 
3.245E+06 
2.313E+06 
1.919E+06 
1.721 E+06 
1.616E+06 
1.572E+06 
1.563E+06 
1.587E+06 

N*IS 

8.575E+O6 
3.918E+06 
2.887E+06 
2. b35E+Ob 
2.202E+06 
2.079E+06 

2.015E+06 
2.040E+06 

2.024E+06 

S.OME+Ot 
3.233E+06 
2.572E+06 

2.067E+06 
l,975E+06 
1.936E+06 
1.938E+06 
1.972E+06 

7 . 4 5 9 h 0 6  
4.227E+06 
3.288E+06 
2.857E+06 
2 .639h06 
2 .537h06 
2.503E+06 
2.528E+06 

1. b36E+07 
4.9066+06 
3.503E+06 
2.9 12E+06 
2.61 5E+06 
2.459E+06 
2.393E+06 
2.382E+06 
2.420E+06 

2.243EtO6 
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JMAX = Maximum current density in the magnet array 

BMAX = Maximum field in the magnets 

ISTOT = Operational ampere-meters at the specified model 

location 

N*IS = Total ampire-meters capacity of the system. 

It is seen that increasing the allowable current density in 

the magnets has a small effect on the total ampere-meters 

capacity. 

The total ampere-meters in five- and six-coil S/C arrays are 

plotted versus array location radius for an S/C model (Fig. 

IV-1). The optimum ampere-meters is at a location radius of 70 

an. The five-coil array uses less ampere-meters than the six- 

coil array. Table IV-3 lists parameters for the S/C arrays for a 

permanent magnet model (PM). In Fig. IV-2 the ampere-meters of 

the five-coil and six-coil S/C arrays are plotted versus magnet 

location radius. The optimum ampere-meters occurs around the 

70 cm radius. 

. 

IV.2. Resistive Levitation Coils. 

The minimization of power consumption is the main goal for 

water-cooled or nitrogen-cooled coil designs. Water-cooled or 

cryocooled copper magnet arrays are shown to be feasible. Tables 

IV-4 and IV-5 list magnet array parameters for S/C and permanent 

magnet models. The significant parameters are: 

Cu Ratio: ratio of copper in the windings 

L, RI, RO: optimum magnet dimensions 

-19- 
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Table IV-3.  

MOOEL Q/H = 3.350Et02 k l K G  
MOOEL LENGTH = 3.000E-01 I 
MIN OISTANCE = 5.000E-02 R 

NC R L RI Ro 

5 .600 1.397 .090 .328 
5 .650 .678 .136 .357 
5 .700 .b93 .173 .386 
5 .750 .403 .205 .b16 
5 .800 .3b8 .23b .bb5 

5 .550 1.168 .088 .298 
5 .600 .579 .135 .328 
5 ,650 .b18 .173 .357 
5 .700 .339 .206 .386 
5 .750 -291 .237 .416 
5 .800 ,260 .266 .bb5 

6 .700 .980 . l o 4  .325 
6 .750 .663 .135 .350 
6 .800 .530 .162 .375 

6 .600 2.121 .066 . .275 
6 .650 .7b5 . l o 9  .300 
6 ,700 .525 . l b l  .325 
6 .750 .b23 .168 .350 
6 .800 .364 .193 .375 

FXIW FYIW FZD rvin TNIW 
.000Et00 .000Et00 1.000Et00 .000Et00 .000Et00 

JHAX 

1.500€+07 . 

1.500E+07 
1.500E+07 
1.500E+07 
1.500€+07 

2.000Et07 
2.000€+07 
2.000E+O7 
2.000€+07 
2.000EqO7 
2.000E+07 

2.000E+07 
2.000E+O7 

2.000E+07 
2 e 000E+07 

2.000E+07 

4.28 
3.45 
2.92 
2.57 
2.33 

5.00 
3.91 
3.24 
2.81 
2.52 
2.33 

3.82 
3.35 
3.02 

5.18 
4.23 
3.64 
3.23 
2.95 

ISTOT 

2.129EtO7 
1.135Et07 
9.072EtO6 
8.117EtO6 
1 .679006 

1.9blEtO7 
1 .OS7E+O7 
8.385Et06 
7. bb6Et06 
6.996Et06 
6.812Et06 

1.735Et07 
1.289Et07 
1.128Et07 

3.773Et07 
1.446Et07 
1.118EtO7 
9.87bEt06 
9.298EtO6 

N*IS 

3.268Et07 
1.739Et07 
1.390Et07 
1.243Et07 
1.175Et07 

2.980Et07 
1.621Et07 
1.285Et07 
l . l l O E t 0 7  
1 .O71EtO7 
l.Ob2Et07 

2.629Et07 
1 .956Et07 
1.714Et07 

5.707Et07 
2.191 Et07  
1.697Et07 
1.500EtO7 
1.414EtO7 
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Table IV-4. 

Minimum Power Copper Magnet Ar rays  
f o r  Lev i t a t ion  of an S/C Model. 

MODEL Q/M = 1.350Et03 Am/kg FX/W FY/W FZ/W TY/W TN/W 

MODEL LENGTH = 3.000E-01 lli 
CU RATIO = 7.500E-01 X Y Z YAW PITCH 
MIN DISTANCE = 5.000E-02 I .000Et00 .000Et00 1.000Et00 .000Et00 .000Et00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.000Et00 .000Et00 1.000Et00 .000Et00 .000Et00 

4t  

NC R L RI Ro JMAX BNAX cu-WT N * I S  PTOTx N*PMAX 

5 .300 .737 .OS5 .151 4.779Et07 
5 .350 .737 .066 .181 2.620Et07 
5 .bo0 .737 .077 .210 1.604Et07 
5 .450 .737 .088 .240 1.068Et07 
5 .500 .737 .098 .269 7.58bEt06 
5 .550 .737 .lo9 .298 5.675Et06 
5 .600 .737 .120 ,328 4.431Et06 
5 .650 .737 .131 .357 3.584Et06 
5 .700 ,737 .141 .386 2.986Et06 
5 .750 .737 .152 .I16 2.552Et06 
5 .800 .737 .163 ,445 2.228Et06 
5 .850 .737 .174 .475 1.981Et06 

6 .300 .737 .046 .125 7.036Et07 
6 .350 .737 .055 .150 3.797Et07 
6 .400 .737 .064 .175 2.297Et07 
6 .450 .737 .073 .200 1.515Et07 
6 .500 .737 .082 .225 1.069Et07 
6 .550 .737 .091 .250 7.952Et06 
6 ,600 .737 .lo1 .275 6.182Et06 
6 .650 .737 .110 .300 4.984Et06 

6 .750 .737 .128 .350 3.534Et06 

6 .a50 .737 ,146 .bo0 2.742Et06 

6 .700 .737 .119 .325 4.143Et06 

6 .800 .737 .137 .375 3.083Et06 

5.54 
3.58 
2.50 
1.87 
1 .46 
1.19 
1 .oo 
.86 
.76 
.69 
.63 
.59 

6.82 
4.37 
3.05 
2.26 
1.77 
1.44 
1.21 
1.05 
.93 
.84 
.77 
.72 

1.544Et03 
2.201Et03 
2.976Et03 
3.866Et03 

5.997Et03 
7.237Et03 
8.593Et03 
1.007Et04 
1.166Et04 
1.336Et04 
1.518Et04 

b.873Et03 

1.264Et03 
1.820Et03 
2.477Et03 
3.235Et03 
1.095Et03 
5.055Et03 
6.117Et03 
7.279Et03 

9.908Et03 

1.294Et04 

8.543003 

1.137Et04 

1.098EtO7 
8.583Et06 
7.104Et06 
6.143Et06 
5.500Et06 
5.064Et06 
4.772Et06 
1.583Et06 
4.473Et06 
4. 426Et06 
4 .b29Et06 
4.477Et06 

1.323Et07 
1.028EtO7 
8.469Et06 
7.295Et06 
6.51 1 Et06 
5.982Et06 
5.627Et06 
5.399Et06 
5.26lEt06 
5.21 1Et06 
5.219006 
5.281Et06 

7.029Et06 
3.016Et06 
1.530Et06 
8.817Et05 
5.612Et05 
3.870Et05 
2.849Et05 
2.215Et05 
1.802Et05 
1.524Et.05 
1.332Et05 
1.198Et05 

1.235Et07 
5.171 Et06 
2.574EtO6 
1.460Et06 
9.182Et05 
6.269Et05 
b.580Et05 
3.539Et05 
2.868EtO5 
2.419Et05 
2.112Et05 
1.900Et05 

7 .300 .737 .038 .lo5 1.007Et08 8.27 1.04bEt03 1.564Et07 2.089Et07 
7 .350 .737 .046 .127 5.339Et07 5.25 1.519Et03 1.207EtO7 8.533Et06 
7 .400 .737 .OS4 .149 3.190Et07 3.64 2.082Et03 9.885Et06 4.17lEt06 
7 . 450  .737 .062 .170 2.083Et07 2.69 2.735Et03 8.479Et06 2.333Et06 
7 .500 .737 .070 .192 1.458Et07 2.10 3.476Et03 7.542Et06 1.450Et06 
7 .550 .737 .078 .214 1.078Et07 1.71 4.307Et03 6.910Et06 9.815Et05 
7 .600 .737 .086 .235 8.341EtO6' 1.44 5.226Et03 6.486Et06 7.120Et05 
7 .650 .737 .094 .257 6.698Et06 1.24 6.234Et03 6.214Et06 5.473Et05 
7 .700 .737 .lo2 .279 5.552Et06 1.10 7.330Et03 6.056Et06 4.417Et05 
7 .750 .737 .110 .300 4.726Et06 1.00 8.516Et03 5.989Et06 3.716Et05 

7 .E50 .737 .126 .344 3.659Et06 .86 1.115Et04 6.072Et06 2.913Et05 
*PTOT & N*PMAX a r e  f o r  water-cooled copper magnets a t  6OOC. 
l i q u i d  nitrogen-cooled magnets,  d i v i d e  by a f a c t o r  of 1 0 .  

7 .EO0 .737 .118 .322 1.117EtO6 .92 9.790Et03 5.998Et06 3.239Et05 
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1.399Et07 
5.997Et06 

1.749Et06 

7.664Et05 
5.638Et05 
4.380Et05 
3.562Et05 
3.01 1Et05 
2.631Et05 
2.365Et05 

3.039Et06 

l.ll2Et06 

2.483Et07 
1.041EtO7 
5.188Et06 
2.948Et06 
1.856Et06 
1.268Et06 
9.275Et05 
-7.175Et05 
5.818Et05 
4.91 1Et05 
4.291Et.05 
3.862Et05 

b.199EtO7 
1.718Et07 
8. 409Et06 
4.7lOEt06 
2.932Et06 
1.987Et06 
1.443Et06 
1.110Et06 
8.965Et05 
7.548Et05 
6.585Et05 
5.924Et05 
For 



JMAX: maximum overall current density in the array 

BMAX: maximum field 

PTOT: optimum total power consumption at this configuration 

N*PMAX: numberaof coils times the maximum power consumption 

of any of them (reflects the size of tBe power supplies 

and serves as an upper bound on the power require- 

ments). 

From Tables IV-4 and IV-5 it is seen that the six-coil array 

requires 55% more power than the five-coil array; and in either 

case, the power consumption is not prohibitive. Figure IV-3 

shows the upper bound for the power requirements versus the 

location radius for the five- and six-coil arrays. It is clear 

from this sketch that the larger the location radius of the 

magnets, the less power consumption of the system. 

Table IV-6 lists comparisons between the six different 

options discussed earlier. Ampere-meters in the magnets relate 

to forces on the model which may be a 20,000 Am pole strength S/C 

model or a 7 , 7 4 0  Am pole strength PM model. The S/C magnets are 

optimized for minimum ampere-meters and the copper magnets are 

optimized for minimum power. The power supply is required to 

charge (for S/C coils) and to maintain I2R losses (for Cu coils). 

Water-cooled copper magnets seem to offer no benefits. LN2 
cooled copper appears interesting with S/C models. The S/C + S/C 

and S/C + PM models seem attractive, particularly for extrapola- 

tion to larger systems. 
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Table IV-5. 

MODEL Q/M 

MODEL LENGTH 
cu RATIO 
MIN DISTANCE 

NC 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

*PTOT 

R 

.300 

.350 

.bo0 

.450 

.so0 

.550 

.600 
,650 
.700 
.750 
.800 
.850 

.300 

.350 

.400 

.b50 

.500 
,550 
.600 
.650 
.700 
.750 
.800 
.850 

.300 

.350 

.IO0 

. b 5 0  

.so0 

.550 

.600 

.650 

.700 

.750 

.800 

.850 

= 3.350Et02 k l k g  FX/W FY/W FZ/W TY/H TN/W 
.000Et00 .000Et00 1.000Et00 .000Et00 .000Et00 

= 3.000E-01 a 
= 7.500E-01 
= 5.000E-02 n 

X Y Z YAW P m t i  
.000Et00 .000Et00 1.000Et00 .000Et00 .000Et00 

L RI RO JHAX 

.737 .os5 .151 

.737 .066 .181 

.737 .077 .210 

.737 .088 .2bO 
,737 .098 .269 
.737 .lo9 .298 
,737 .120 .328 
.737 .131 .357 
.737 .141 .386 
.737' .152 .416 
.737 .163 .4b5 
.737 .174 .475 

.737 .046 .125 

.737 ,055 .150 

.737 .064 .175 

.737 .073 .200 

.737 .082 .225 

.737 ,091 .250 

.737 .lo1 .275 

.737 .110 .300 

.737 .119 .325 

.737 ,128 .350 

.737 .137 .375 

.737 .1b6 ,400 

1.926Et08 
1.056Et08 
6. 465Et07 
4.303Et07 
3.056Et07 
2.287EtO7 
1.786Et07 
1.444Et07 
1 .203Et07 
1.028EtO7 
8.977Et06 
7.985Et06 

2.836Et08 
1.530Et08 
9.258Et07 
6.106EtO7 

3.204Et07 
2. 491Et07 
2.008EtO7 
1.669Et07 
1.42bEt07 

1.105EtO7 

4.306Et07 

1 .242Et07 

.737 ,038 .lo5 4.058Et08 

.737 .Ob6 .127 2.152Et08 

.737 ,054 .149 1.285Et08 

.737 .062 .170 8.395Et07 

.737 .070 .192 5.875Et07 

.737 .078 .214 4.345Et07 
,737 .086 .235 3.361Et07 
.737 .094 .257 2.699Et07 
.737 .lo2 .279 2.237Et07 
.737 .110 .300 1.905Et07 
.737 .118 .322 1.659Et07 
.737 .126 .3b4 1.474Et07 

M A X  

22.34 
14.41 
10.09 
7.52 
5.89 
4.79 
4.03 
3.48 
3.08 
2.77 
2.54 
2.36 

27.49 
17.60 
12.27 
9.13 
7.14 
5.81 
1.89 
4.23 
3.75 
3.38 
3.11 
2.90 

33.34 
21.15 
14.66 
10.85 
8.46 
6.88. 
5.79 
5.01 
4.44 
4.02 
3.70 
3 .45  

CU-WT 

1.54bEt03 
2.201Et03 
2.976Et03 
3.866Et03 
b.873EtO3 
5.997Et03 
7.237Et03 
8.593Et03 
1 .007EtO4 
1.166Et04 
1.336Et04 
1.518Et04 

1.264Et03 
1.820Et03 
2.177Et03 
3.235Et03 
4.095Et03 
5.055Et03 
6.1 l7Et03 
7.279Et03 
8.543Et03 
9.908Et03 
1.137EtOb 
1.294EtOb 

l.ObbEt03 
1 S19Et03 
2.082Et03 
2.735Et03 
3. b76Et03 
4.307Et03 
5226Et03 
6.234Et03 
7.330Et03 
8.516E+03 
9.790Et03 
1.115Et04 

& N*PMAX are for water-cooled copper m 

x 
N*IS PTOl* N*PMAX 

4. b24Et07 
3.459Et07 
2.863Et07 
2.476Et07 
2.216EtO7 
2.041Et07 
1.923Et07 
1.847Et07 
1 .803EtO7 
1.783Et07 
1.785Et07 
1.80bEt07 

5.333Et07 
b.143EtO7 
3.41 3EtO7 
2.940EtO7 
2.624EtO7 
2.41 lEtO7 
2.267EtO7 
2.176EtO7 
2.122Et07 
2.100Et07 
2.103Et07 
2.128Et07 

6.302EtO7 
4.862Et07 
3.984Et07 
3.417Et07 
3.039Et07 
2.78bEt07 
2.61 bEtO7 
2.50bEt07 
2. 440EtO7 
2.41 bEtO7 
2. bl7EtO7 
2.447EtO7 

1.141Et08 
4.898Et07 
2. b85EtO7 
1.432Et07 
9.11 4Et06 
6.285Et06 
b.627Et06 
3.597Et06 
2.926EtO6 
2.475Et06 
2.163Et06 
1.945Et06 

2.006Et08 
8.397EtO7 
4 .  180EtO7 
2.372EtO7 
1 .b91EtO7 
1.01 8Et07 
7.437Et06 
5.748Et06 

3.928Et06 
3.430Et06 
3.085Et06 

4 .657Et06 

3.392Et08 
1.386Et08 
6.773EtO7 
3.789Et07 
2.356Et07 
1.59bEt07 
1.156EtO7 
8.887Et06 
7.173Et06 
6.034EtO6 
5.261Et06 
b.730Et06 

2.272Et08 
9.739EtO7 
b.936Et07 
2.8blEt.07 
1 -806Et.07 
1.245EtO7 
9.156Et.06 
7.114Et.06 
5.78SEt06 
4.890Et06 
b.273Et.06 
3.841Et06 

4.032EtO8 
1.690Et08 
8.426Et07 
4.787Et07 
3.013Et07 
2.060E+O7 
1.506Et07 
1.165EtO7 
9.448Et06 
7.975Et06 
6.968Et06 
6.271Et06 

6.819EtO8 
2.790E+08 
1.366Et08 
7.650Et07 
b.762EtO7 
3.226Et07 
2.343Et.07 
1.802Et07 
1.456Et07 
1.226Et07 
1.069Et07 
9.621Et06 

gnets at 6OOC. For 
liquid nitrogen-cooled magnets, divide- by a factor of 10. 
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IV-3. Levitation Coils Dimensions. 

Three representative magnet cross-sections are sketched in 

Fig. IV-4 for the 5 levitation coils. The top sketch is for S/C 

model and S/C magnets at 2 kA/cma. The middle sketch is for a PM 

model and S/C magnets at 2 kA/cm2. The bottom sketch is for an 

S/C model with low current density copper magnets or for a PM 

model with higher current density copper magnets. Either copper 

magnet set could be cooled with water or liquid nitrogen. 

Table IV-6. 

CURRENT DENSITY 1.5 1.5 0.3 1.2 0.3 1.2 
(kA/cm2) 

DC POWER SUPPLY 0.0 0.0 360.0 5800.0 36.0 580.0 
(kW) 
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J-= 2.0 W/cm" 
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Figure  IV-4. Support Magnets for S / C  and PM Models. 
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V. LEVITATION MAGNET SYSTEMS 

Two options have been chosen for magnet system design. The 

first is superconducting coils and permanent magnet model. The 

second is nitrogen cooled coils and permanent magnet model. 

V.l. Superconductinq Levitation Magnets 

Table V-1. 

Number of Magnets ................................ 5.0 
Location radius (m) .............................. 0.7 
Magnet inner radius (m) .......................... 0.206 
Outer radius (m) ................................. 0.386 
Height (m) ....................................... 0.339 
Magnet top to model distance (m) 1 . O  
Maximum current density (A/m2) ................... 2.0 x 10 
Maximum winding field (T) ........................ 3.0 
Magnet current (A)  ............................... 500.0 

................. 7 

Table V-1 lists the specifications of the 5 superconducting 

solenoids used to levitate the permanent magnet core. The coils 

are optimized to have the least ampere-meters. The 500 A conduc- 

tor chosen for this design is a one triplex of an 11 kA ac 

conductor used in our previous suspension designs. 'I2 

triplex has a twist pitch of 2.2 cm. Each part of the triplex is 

a seven-strand conductor. The seven-strand conductor is six OFHC 

copper wires twisted around a superconducting center conductor 

The 500 A 

- 
and all soldered with Staybrite. Since the requirements of low 

ac losses and cryostability conflict with each other, the basic 

principle chosen for this conductor is to achieve cryostability 
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within the basic cable. Each superconducting strand has a 

diameter of 0.051 cm and contains 2041 filaments of 6.7 pm dia 

with a twist pitch of 1.27 cm. The copper-to-superconductor 

ratio for each superconducting strand is 1.8. The reported 

losses on this conductor at a cycle that has B = 9 T/s during 

charge and discharge are summarized in Table V-2. 

Table V-2. 

Eddy current losses (J/cycle/m) ........................... 0.21 
-5 Hysteresis loss (J/cycle/m) ............................... 10 

Exact losses have not been calculated because finding the 

rms value of the correction currents is beyond the scope of this 

work. IAI/II ranges between to depending on the yaw 

position and off-center signals. An estimate of ac losses for 

500 A triplex conductor is about 200 W. The inductance matrix 

for the 5 levitation magnets is listed in Table V-3, as based on 

single turn coils. The maximum possible force between magnets is 

18.5 x 10 N. 4 

Some details of the magnet support system and the cryostat 

are given in the Appendix. A distance of 9 cm from the top of 

the cryostatto the tip of the magnets is assumed for calculation 

purposes. It now appears that 13 cm is a more practical choice 

for final design. 
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Table V-3. 

Coil #1 2.99x10-’ -- 

V. 2. Nitrogen Cooled Magnet System 

Table V-4 lists the specifications for 5 nitrogen cooled 

copper solenoids used to levitate the permanent magnet model 

core. The coils are optimized for minimum ohmic heating. Each 

of the 5 levitation coils is a stack of pancakes of rectangular 

OFHC copper turns. The cooling surface is the surface between 

pancakes. For the optimized dimensions listed in Table V-4, the 

maximum heat flux q in W / c m 2  at the cooling surface for N pan- 

cakes is 

q = 14.2/N . 
For N = 30 the heat flux is less than 0 . 5  W/cm2 (which is small). 

Each pancake is 12 turns of 6kA square conductor 1.95 cm high. 

The separation between pancakes is 0.524 cm. There is 1 mm of 

insulation between turns. 

is 0.5 volt. The space between pancakes allows outward flow in 

the radial direction. 

The maximum turn to turn ohmic voltage - 
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Table V-4. 

N u m b e r  of-magnets  .................................. 5 
Locat ion r ad ius  (m)  ................................. 0 . 7  
Inne r  r a d i u s  (m)  ................................... 0 . 1 4 1  
Outer r a d i u s  ( m )  ................................... 0 . 3 8 6  
Magnet he igh t  ( m )  .................................. 0 . 7 3 7  

Maximum gross c u r r e n t  d e n s i t y  ( A / m 2 )  .............. 1 . 2 0 3  x 1 0  

Total copper weight (kg) ........................... 1 . 0 0 7  x l o 5  
Total  power f o r  5 magnets (w) ...................... 2 . 9 2 6  x l o 5  
Maximum power p e r  magnet (w) ....................... 1 . 1 5 7  x 1 0  
Magnet c u r r e n t  (kA) ................................. 5 

Magnet t o p  t o  model d i s t a n c e  (m) ................... 1 . 0  7 

% Copper volume .................................... 75 4 

Each coi l  w i l l  be cooled as fol lows:  

1. Var iab le  flow along bore ( s i n g l e  phase)  

2 .  Constant r a d i a l  outward flow ( t w o  phase)  

3 .  Variable t w o  phase flow along o u t e r  c i rcumference.  

Using low pressure  2 atm. b o i l i n g  n i t r o g e n  c o o l i n g  t h e  flow rate  

f o r  each c o i l  i s  124 gal lon/m ( 9 9 4  f t 3 / h r )  a t  1 0 %  e x i t  q u a l i t y .  

The p r e s s u r e  drop along t h e  c e n t r a l  bore (1) i s  n e g l i g i b l e  

compared t o  the p r e s s u r e  drop between pancakes ( 2 )  which i s  0.05 

psi. T h e  pressure  drop i n  t h e  o u t e r  r eg ion  ( 3 )  is  0 . 0 0 7 7  p s i / f t .  

This  i s  so low compared t o  t h e  0 . 0 5  p s i  drop  a c r o s s  pancakes t h a t  

t h e  flow w i l l  be c l o s e  t o  uniform. 

Prel iminary des ign  of t he  l i q u i d  n i t r o g e n  c r y o s t a t  i s  aimed 

a t  determining minimum p r a c t i c a l  spac ing  from t h e  t o p  of t h e  

magnets t o  t h e u p p e r  s u r f a c e  of  t h e  vacuum j a c k e t  p l a t e .  R e s u l t s  

of t h e s e  c a l c u l a t i o n s  a r e  presented  i n  Table V-5. 
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Table V-5. 

Top of magnet 0 
Flow space 0.3 
Cold structure 2.0 
Pressure deflection 0.3 
Composite cold top plate 2.5 
Insulation space 2.5 
Top plate deflection 0.8 
Composite top plate 2.0 

0 
0.3 
2.3 
2.6 
5.1 
7.6 
8.4 

10.4 

Minimum total space 10.4 
from top of magnet 

-33-  



VI. MODEL DYNAMIC SIMULATION 

Model control requirements are determined from a simulation 

study in which .the exact motion of the model is calculated in 

response to sensor signals and restoring fdrces. 

caused by magnetic forces and torques from the five control 

magnets. These forces are effectively always non-zero because 

the position and velocity are known only to the precision of the 

sensing system; furthermore, corrective forces applied every 50 

ms will continuously change the positions and velocities. There 

are four main purposes of this study: (1) To determine achieva- 

ble positioning specifications; ( 2 )  To find if the model can be 

held within allowed displacements in the five degrees of freedom 

(x, y, 2 ,  yaw, and pitch); ( 3 )  To size the power supplies re- 

quired to perform the control; and ( 4 )  To find or suggest future 

better positioning scenarios, especially for the yaw and pitch, 

as explained later. 

Model motion is 

The preliminary study is not complete; it does not account 

for all possible factors that affect precise positioning of the 

model. Not included in particular is the exact location of 

individual levitation coil windings after cooldown and their 

cumulative mechanical migration in response to magnetic forces 

over time. Nevertheless, this preliminary study shows that model 

positioning is attainable with the position sensing system 

provided by NASA. 

The model and support magnet combination selected consists 

of a permanent magnet model and five superconductinq support 
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magnets (Fig. VI-1). The specifications used for the simulation 

study are listed in Table VI-1. 

Figure VI-1. Electromagnetic system used for levitation and 
control. 
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Table VI-1. 

Specifications for the PM Model Core 
and the Superconducting Levitation Coils. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A. Model 

Total mass ............................ 23.11 kg 
Total inertia ......................... 0.6 kg m2 
PM pole strength ...................... 7.742 x lo3 Am 
PM length ............................. 12" (30.48 cm) 

No. of coils .......................... 5 
Location radius ....................... 0.7 m 
Inner radius .......................... 0.173 m 
Outer radius .......................... 0.386 m 
Coil height ........................... 0.493 m 
No. of turns .......................... 3150 
Maximum operating current ............. 512 A 
Self-inductance ....................... 2.894 H 

B. Levitation Coils 

_ _ _ _ ~  

The assumptions used for the sensing and positioning system, 

Fig. VI-2, are: 

1. The resolution for sensing positions of the model in 

the x, y, and z directions is 0.001" (2.54~10-~m). 

2. The resolution for sensing angles of yaw and pitch is 

0.002 O .  

3. Information about the above positions is available at 

50 ms time intervals. 

4. There is a 25 ms time lag between determining the model 

position and initiating power supply control current 

pulses . 
5. The correction signals following the 25 ms time lag are 

in the form of Fm sin2nft where o<t<'re, f is the 

correction frequency, and T = 1/2f. e 
6. The sum of the time for operating the correction 

signals, T plus the 25 ms time lag is equal or less 

than the 50 ms time interval discussed in (3.) above. 
e 
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Figure VI-2. Feedback control. 

-37- 



7. Information for control of position, velocity and 

forces on the model is based on the resolution limits 

mentioned; for example, the x location is known to be 

within a 0.001" region. The actual solution of the 

equation of motion in the 5 degrees of freedom is used 

to simulate information available from the sensors. 

The forces and torques on the model when off central posi- 

tions are functions of all 5 degrees of freedom. However, in the 

x, y, and z directions the forces and torques are more linearly 

related to the displacements. This enables a prediction of drift 

time constants, T = m. These time constants are typically 500 
to 1000 ms for the x, y, and z directions. In the yaw and pitch 

directions the torques are more related to x, y and z than to yaw 

and pitch angles. Unfortunately, such information about x, y, 

and z is not available on a continuous basis but rather on a 

discrete basis which sometimes makes the control system blind as 

far as the magnitude and direction of these torques is concerned. 

The small inertia of the model makes the problem even more 

difficult because the time constant for responding to the drift- 

ing torques is very small ( < 4 0  ms) while the time interval 

between corrections is 50 ms. If the model acquires any signifi- 

cant momentum in roll or pitch during 50 ms, it would become 

impossible to position or control the model. 

A computer program is constructed on the above-mentioned 

assumptions. The program solves the equation of motion of the 

model in 5 degrees of freedom yielding exact positions, veloci- 

ties, and drifting. forces and torques under equilibrium currents 
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that produce pure lift in the (x, y, 2 ,  yaw and pitch) 

= (O,O,l,O,O) position. Forces and velocities supplied to the 

control system are based on the resolution of the sensors. 

Within these resolutions it is not expected that the computed 

Salues would correspond all the times with the values calculated 

from the sensed approximate positions. Many different scenarios 

and control decisions have been experimented with to control the 

model in the two difficult modes (yaw and pitch). 

The structure of the simulation computer program is as 

follows : 

1. For every period of time, T = 50 ms, the five positions 

or angle zones are recorded. The resolution for 

determining these zones is discussed earlier in this 

chapter. The velocities in the 5 degrees of freedom 

are calculated based on the model position 50 ms 

earlier. The drifting forces are calculated assuming 

the 5 levitation coils are carrying the equilibrium 

currents . 
2. 25 ms later, a correcting force is imposed on the 

in the form of a half sine wave for a time period 

ms. The force is 

Fc - - Fmax sin (rt/Te) 
for o<t<Te. 

is related to the calculated drifting forces Fmax 
and the model velocities V recorded 25 ms earlier 

model 

Te<50 

(1) 

Fd 

according to 
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2Fmax/ 71 = {a Fd + 

where m is the mass or inertia of the model depending 

on the degree of freedom and a and B are multiplying 

factors to be evaluated. 

The correction force Fc is obtained from the 

current-force subroutine that finds the 5 current 

changes in the levitation coils needed to produce the 

correction forces. These fAI current pulses are added 

to the equilibrium currents. 

3. 

Several combinations of a and B are used. The combination 

of a=B=l results in a build-up oscillation in all degrees of 

freedom as shown in Table VI-2. Fig. VI-3 shows the effect of 

reducing the value of B on this oscillation. The yaw direction 

is used as an example. There is no definite conclusion at the 

present time on the best combination of a and B .  Fig. VI-4 and 

Table VI-3 show the position of the model in the 5 degrees of 

freedom over 4000 ms of operation for the case of a=l and B=0.4. 

Tables VI-4 and VI-5 show the ratios of both the calculated 

forces and velocities compared to the exact forces and velocities 

computed from the equation of motion in the five degrees of 

freedom. As shown in these tables, quite often the calculated 

values do not agree with the computed ones in magnitude and 

direction. This is related to the discrete zone positioning from 

the sensors rather than exact positioning. Table VI-6 lists the 

correction currents and voltages of the power supplies as func- 

tion of time. As shown, correction currents as small as 10 of - 4  
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the equilibrium currents, e.g., are needed for corrections in the 

yaw or pitch directions. 

We believe that it will be possible to improve the control 

system through more sophisticated programming based on the 

previous history of the position of the model rather than on the 

single previous position, as is the case in the current program. 

The use of a and B as functions of the degree of freedom and 

position may result in better positioning as well. Such new, 

more advanced computer program is beyond the scope of the present 

effort. 
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Figure VI-3. Model position in yaw direction at time intervals 
50 ms long for a value of a=l and B=1, 0.5, and 
0.4 respectively. As seen, better control can be 
achieved by using values of B - < 0.5. 
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Table VI-2. 

Ti m e  ( ins ) X/ . 00 1 " Y/ . 0 0 1  " Z/ . 00 1 " Yaw/. 002' Pi t c h /  ,002' 

0 
5 0  

1 0 0  
1 5 0  
2 0 0  
2 5 0  
3 0 0 
3 5 0  
4 0 0  
4 5 0  
5 0 0  
5 5 0  
6 0 0  
6 5 0  
7 0 0  
750  
8 0 0  
8 5 0  
9 0 0  
9 5 0  

1000  
1 0 5 0  
1 1 0 0  
1 1 5 0  
1 2 0 0  
1 2 5 0  
1 3 0 0  
1 3 5 0  
1 4 0 0  
1 4 5 0  
1 5 0 0  

0 
0 
0 
0 
0 
1 
0 
0 

-1 
-1 

0 
0 .  

-1 
- 2  
-1 

0 
-1  
- 5  
-4  

3 
3 

-14  
-19  

36  
85  

- 2 0  
- 2 2 7  
- 1 9 5  

1 7 1  
220 

- 8 3 1  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-2  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
- 3  
-4  
- 6  

-11 
- 8  

- 2 5  

0 
0 
0 

- 2  
-4  
- 4  
-1 
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1 6  

4 
- 2 6  
- 2 2  

49  
9 8  

1 
- 1 4 6  
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Fig. VI-4.a. Model position in x and y at time intervals 50 ms 
long. Values of a = l  and 8=0.4 are used f o r  correc- 

that it stays within f 0.001 in. all the time. 
. tion. The model position in z is not shown except 
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Fig. VI-4.b. Model position in yaw and pitch at 50 ms time 
intervals. Values of a = l  and B=0.4 are used f o r  
correction. 
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Table VI-3. 

Time(ns') X/.OOl" Y/.OOl" Z/.OOl" Yaw/.oo2 Pitch/.OO2 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 
1000 
1050 
1100 
1150 
1200 
1250 
1300 
1350 
1400 
1450 
1500 
1550 
1600 
1650 
1700 
1900 
1950 
2000 

0 
0 
0 
0 
0 
1 
1 
0 
0 
0 

-1 
-2 
-2 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-2 
-1 
-1 
-1 
-2 
-2 
-2 
-1 
-1 
-2 
-2 
-2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
-1 
0 
0 
0 

-1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

-2 
-4 
-5 
-4 
-2 
0 
2 
5 
8 
9 
7 
2 
0 
2 
4 
6 
6 
4 
1 
0 
1 
1 
1 
1 
1 
0 

-1 
-4 
-5 
-5 
-4 
-3 
-2 
-1 
-1 

0 
0 
0 
0 
0 

-2 
-7 
-9 
-8 
-5 
-2 
0 
4 
10 
1 1  
6 
1 
0 
3 
9 

13 
13 
9 
6 
5 
7 

1 1  
13 
13 
11 
8 
6 
4 
3 
4 
3 
3 
4 
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Table VI-4. 

0 
50 
100 
15.0 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 

1000 
1050 
1100 
1150 
1200 
1250 
1300 
1350 
1400 
1450 
1500 
1550 
1600 
1650 
1700 
1'7 5 0 
1800 
1850 
1900 
1950 
2000 -------- 

0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0.00000 
0.00000 
0.00000 
0.48610 
0.96280 
1.00119 

0.97665 
0.77469 
0.53327 
0.97691 
0.93341 
0.94058 
1.04979 
1.13457 
0.97978 
1.05015 
0.58729 
0.83967 
0.81859 
0.99318 
1.04778 
1.02457 
0.76929 

-2 ..93851 
3.25475 
0.74365 
0.94640 
0.91328 
0.90417 
1.85884 

0.89953 
0.93112 
0.96570 
0.86154 
0.19993 
1.20054 
0.30878 

0.96a.55 

' 1.03863 

-------------- 

0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0  

-0.03843 
-0.07597 
-0.09036 
-0.04906 
-0.01439 
0.01272 
0.01159 

-0.01070 
0.95801 

0.00001 
-0.16029 
-0.48534 
-0.59157 
-0.14877 
0.20329 
1.03958 
0.16563 
0.30819 
0.27047 
0.13974 
0.00000 
-0.03623 
-0.04551 
-0.0 1251 
0.01031 
0.90390 
0.85894 
-0.29930 
1.96616 

-0.4 2299 
-0.03392 
-0.02292 
0.83049 
0.75548 
-0,45523 
-0.77140 
0.04415 

0.98374 

------------ 

0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0 . 0 0 0 1 0  

-0.01376 
-0.14779 
-0.00022 
0.00019 
0.00051 
0.00025 
0.00005 
-0.00438 
-0.00477 
-0.00525 
-0.00782 
-0.00515 
-0.00738 
-0.00917 
-0.00 118 
-0.00081 
0.00148 
0.00336 
0.00478 
0. 0042.4 
0.00110 
-0.00396 
-0.00491 
-0.00466 
-0.00070 
0.00390 
0.04582 

-0.00085 
0.00564 
0.00626 
0.00188 

-0.00525 
-0.00637 
0.00179 
0.00378 
-0.00027 

0 .  ooosa 

-------------- 

0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0  

0.97657 
1.03127 
0.97510 
0.98216 
0.75233 
0.50270 
0.97715 
0.92104 
0.93221 
1.02612 
1.18925 
0.99282 
1.08084 
0.54783 
0.82941 
0.79658 
1.03825 
1.06803 
1.03357 
0.75103 
2.29466 

-3.52841 
0.73086 
0.93670 
0.90577 
0.88769 
7.19336 
1.07351 
0.91425 
0.92850 
0.95919 
0.84772 
2.51021 
1.32382 
0.27505 

o.iga2i 

------------ 

0.00000 
0.00000 
0.00000 
0.93147 
0.93858 
0.98406 
0.77256 

0.86995 
0.95827 
0.69413 
0.84430 
0.95870 
0.00000 
0.98509 
0.'95671 
0.90783 
0.70481 
0.89920 
0.54373 
0.69089 
0.98990 
0.97244 
0.92964 
0.00000 
0.88880 
0.97211 
0.62005 
0.99587 
-0.08604 
0.85613 
0.93151 
0.96497 
0.93094 
0.82385 
0.82333 
0.99627 
0.99775 
0.94695 
0.88040 
0.81340 

0 .  a8696 

. - - - - - - - - - - - - - -  
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Table VI-5. 

Time (ms) V ( X )  ........................ 
0 0.00000 

50 0.00000 
100 0.00000 
150 0.00000 
200 0.00000 
250 4.32024 
300 0.00000 
350 1.34514 
400 0.00000 
450 0.00000 
500 1.23397 
550 2.24091 . 
600 0.00000 
650 1.36086 
700 0.00000 
750 0.00000 
800 0.00000 
850 0.00000 
900 0.00000 
950 0.00000 
1000 0.00000 
1050 0.00000 
1100 0.00000 
1150 0.00000 
1200 0.00000 
1250 0.00000 
1300 13.69375 
1350 2.01157 
1400 0.00000 
1450 0.00000 
1500 2.68454 
1550 0 * 00000 
1600 0.00000 
1650 5.02479 
1700 0.00000 . 
1750 2.01368 
1800 0.00000 
1850 0.00000 
1900 0.00000 
1950 0.00000 
2000 0.00000 
2050 0.00000 

V(Y) 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0 * 00000 
0.00000 
0.00000 
8.64438 
1.19902 
0.00000 
0 * 00000 
0 . 0 0 0 0 0  
0.00000 
0.00000 
0.00000 
0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
7.10133 
0.00000 
2.28643 
0.00000 
0.00000 
0.00000 
0.00000 
4.40873 
0.00000 
2.37175 
0.00000 
1.89666 

--------- V(Z) V(yaw) V(pitch1 
.----------------------------------- 
0.00000 0.00000 0.00000 
0 . 0 0 0 0 0  0.00000 0.00000 
0.00000 0.00000 0.00000 
0.00000 1.06338 0.00000 
0.00000 1.19496 0.00000 
0.00000 3.27362 0.49320 
0.00000 0.57969 1.83462 
0.00000 1.13477 -1.48684 
0.00000 1.88272 0.35124 
0.00000 0.70975 1.03991 
0.00000 1.22712 1.39766 
0.00000 1.93011 0.92659 
0.00000 -0.54598 0.83505 
0.00000 0.55985 2.14069 
0 9 00000 1.71121 -0.29596 
0.00000 -1.19816 0.84187 
0.00000 0.81846 2.18153 
0.00000 0.96895 -1 10008 
0 e 00000 2.59122 0.59701 
0 e 00000 0.00000 1 I6014 
0.00000 0.85458 24.62722 
0.00000 10.01 179 0.00000 
0.00000 -0.55009 0.98250 
0.00000 1.72844 1.73212 
0.00000 0.00000 -0.92762 
0.00000 0 s 00000 0.69196 
0.00000 0 . o o o o o  1.48081 
0.00000 0 e 00000 2.75307 
0.00000 -4.38477 0.00000 
0.00000 0.52170 0.89381 
0.00000 1.59310 1.52508 
0.00000 3.45763 1.56762 
0.00000 0.00000 2.72046 
0.00000 0.76593 -1.59664 
0.00000 1.43856 0.60910 
0.00000 0.00000 2.15759 
0.00000 0.00000 0.00000 

2.10720 1.46919 0.00000 
0.00000 0.00000 3.07016 
0.00000 3.13842 0.00000 
0.00000 0.00000 1.70467 
0.00000 1.46196 0.00000 
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Table VI-6. 

0 
25 
37 
50 
75 
87 
100 
125 
131 
150 
175 
187 
200 
225 
237 
250 
275 
287 
300 
325 
337 
350 
375 
387 
400 
125 
437 
450 
475 
487 
500 
600 
625 
637 
650 
675 
687 
700 
725 
737 
750 
775 
787 
800 
825 
837 
850 
875 
887 
900 
925 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
-0.24869 
0.00000 
0.00000 
3.26555 
0.00001 
0.00000 
-0.38195 
0.00000 
0.00000 
-2.7085 1 
-0.00001 
0.00000 
0.21866 
0.00000 
0.00000 
0.52919 
0.00000 
-0.00001 
0.00000 
0.26907 
0.00000 
0.00000 
3.98034 
0.00001 
0.00000 
0.23174 
0.00000 
0.00000 
0.10272 

0.00000 
0.23390 
0.00000 
0.00000 
0.14703 
0 .ooooo 
0.00000 

-0.zia70 

0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.02163 
0.00000 
0.00000 
0.02164 
0.00000 
0.00000 
-3.37054 
-0.00001 
0.00000 
-0.11142 
0.00000 
0.00000 
2.53803 
0.00001 
0.00000 
0.07853 
0.00000 
0.00000 
0.38123 
0.00000 
0.00001 
0.00000 

-1.28888 
0.00000 
0.00000 
-2.85895 
-0.00001 
'0.00000 
-0.83085 
0.00000 
0.00000 
-1.03058 
0.00000 
0.00000 

-0.34612 
0.00000 
0.00000 
0.04389 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
-0.14720 
0.00000 
0.00000 
-0.14722 
0.00000 
0.00000 
0.65224 
0.00000 
0.00000 
-0.15966 
0.00000 
0.00000 
-0.814 16 
0.00000 
0.00000 
0.20829 
0.00000 
0.00000 
0.57375 
0.00000 
-0.00001 
0.00000 
4.04702 
0.00001 
0.00000 
1 ,65344 
0.00000 
0.00000 
-0.11444 
0.00000 
0.00000 
-0.25287 
0 * 00000 
0.00000 

-0.07164 
0.00000 
0.00000 
0.08478 
0.00000 
0 .ooooo 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
-0.14714 
0.00000 
0.00000 
-0.14713 
0.00000 
0.00000 
1.28241 
0.00000 
0.00000 
0.461 36 
0.00000 
0.00000 
-0.4 1491 
0 .ooooo 
0.00000 
0.08608 
0.00000 
0.00000 
0.05278 
0.00000 
0.00001 
0.00000 
-3.81923 
-0.00001 
0.00000 
0.38288 
0.00000 
0.00000 
-0.39077 
0.00000 
0.00000 
0.35757 
0.00000 
0.00000 
0.38450 
0.00000 
0.00000 
0.20695 
0.00000 
0.00000 

0.ooooo 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.021 58 
0.00000 
0.00000 
0.02157 
0.00000 
0.00000 
-2.33560 
-0.00001 
0.00000 
1.39037 
0.00000 
0 .ooooo 
3.19199 
0.00001 
0.00000 
-0.12176 
0.00000 
0.00000 
-0.47327 
0.00000 

, 0.00000 
0.00000 
0.99898 
0.00000 
0.00000 
-1.95052 
-0.00001 
0.00000 
-1.28493 
0.00000 
0.00000 
-0.02886 
0.00000 
0.00000 
0. 10193 
0.00000 
0.00000 
0.24417 
0.00000 
0.00000 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

790.62 
-5.69 
90.62 

-90.62 
-5.69 
90.62 

1189.94 
74.72 

-1189.95 
-139.18 
-8.74 
139.18 

-986.95 
-61.97 
986.95 
90.61 
5.69 

-90.61 
192.83 
12.11 

-192.84 
1200.39 
98.06 
6. I6 

-98.02 
1450.39 
91.07 

-1450.45 
84.44 
5.30 

-84.46 
146.74 
9.21 

-146.75 
85.23 
5.35 

-85.23 
53.57 
3.36 

-53.58 
148.16 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.88 
0.49 

-7.88 
7.88 
0.50 

-7.89 
-1228.22 
-77.12 
1228.11 
-42.80 
-2.69 
42.80 
924.86 
58.07 

-924.86 
28.61 
1.80 

-28.62 
138.91 
8.72 

-138.93 
-2037.31 
-469.70 
-29.49 
469.62 

-1041.74 
-65.41 
1041.88 
-302.75 
-19.01 
302.76 

-375.55 
-23.58 
375.52 
-126.13 
-7.92 
126.13 
15.99 
1.00 

-15.99 
173.69 

0.00 
0.00 
0.00 
0.00 
0.00 
t.00 
0.00 
0.00 
0.00 
0.00 

-53.64 
-3.37 
53.64 
-53.64 
-3.37 
53.64 
237.70 
14.92 

-237.61 
-167.47 
-10.52 
167.49 

-296.69 
-18.63 
296.68 
75.90 
4.77 

-75.89 
209.09 
13.13 

-209.06 
1506.33 
1474.75 
92.60 

-1474.76 
602.47 
37.83 

-602.61 
-11.70 
-2.62 
41.69 
-92.12 
-5.79 
92.17 
-26.09 
-1.64 
26.10 
30.89 
1.94 

-30.90 
215.31 

0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 

-53.62 7.86 
-3.37 0.49 
53.61 -7.86 

-53.61 7.86 
-3.37 0.49 
53.61 -7.86 
467.29 -851.06 
29.34 -53.44 

-167.34 851.10 
168.10 506.65 
10.56. 31.81 

-168.09 -506.65 
-151.17 1163.09 
-9.49 73.03 
151.21 -1163.12 
31.36 -44.36 
1.97 -2.79 

-31.37 44.37 
19.22 -172.44 
1.21 -10.83 

-19.25 112.46 
-892.19 -316.91 
-1391.74 364.04 
-87.39 22.86 
1391.77 -364.04 
139.55 -1803.96 
8.76 -113.27 

-139.43 1803.88 
-112.38 -468.22 
-8.94 -29.40 
142.42 468.21 
130.27 -10.50 
8.18 -0.66 

-130.32 10.53 
140.10 116.46 

8.80 9.20 
-110.11 -146.16 
75.41 88.97 
1.74 5.59 

-75.11 -88.98 
-86.28 -322.68 
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VII. APPENDIX 

Cryostat and Cryogenic System Design 

Preliminary design of the levitation magnet cryostat and 

cryogen system is illustrated on drawings MM-B-84, Fig. VII-1, 

and MM-B-85 (Fig. VII-2), and the cryostat sketch, Fig. VII-3. 

Most of the key features of the cryostat are shown in Fig. VII-1. 

* The five magnets are each wound on 12.7 mm G-11 composite 

mandrels with 12.7 mm end plates. The lower portion of each 

winding mandrel is extended to provide vertical support from 

the bottom of the liquid container. 

* Top and bottom of each magnet mandrel tube fits into pre- 

cision bored holes in 19 mm G-11 structural plates. These 

plates hold the magnets in fixed relation to each other 

regardless of the magnitude and direction of resultant 

loads. 

* The top and bottom plates are attached to an external 

6.35 mrn thick cylinder which provides rotational stiffness 

to the magnet structural assembly. The combination of heavy 

top and bottom plates and outer cylinder makes a rigid 

fixture for the assembly which is independent of the cryo- 

stat structure. 
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* Addi t iona l  s t r u c t u r a l  s t i f f n e s s  i s  provided by f i v e  l a r g e  

re-entry p i p e s  which house t h e  v e r t i c a l  suppor t  l e g s .  These 

t e n  inch schedule  5 p ipes  are  welded t o  t h e  bottom s t a i n l e s s  

s teel  cold p l a t e  and extend up through match bored h o l e s  i n  

t h e  magnet s t r u c t u r a l  p l a t e s  t o  provide  added l a t e r a l  

r i g i d i t y .  

* The inner  c o l d  assembly cons i s t s  of composite bore tubes  f o r  

each magnet, a 1 9  mm G-11 composite t o p  p l a t e ,  0 . 6 1  m 

diameter s t a i n l e s s  s teel  i n n e r  c y l i n d e r ,  2 . 1 8  m diameter 

o u t e r  cy l inde r  and a 1 6  mm s t a i n l e s s  steel  bottom p l a t e .  

There is no m e t a l  i n  t h e  magnet bores o r  i n  t h e  space  above 

them. Magnets are l o c a t e d  some 30  c m  above t h e  bottom t o  

reduce eddy c u r r e n t  hea t ing .  

* A l l  access  t o  t h e  c r y o s t a t  i s  from t h e  bottom i n  o r d e r  t o  

preserve  a f l a t  upper contour .  Access requi rements  i nc lude  

helium l i q u i d  supply and v e n t s ,  5 p a i r s  of power l e a d s  and 

ins t rumenta t ion  connec t ions .  Vapor cooled l e a d s  w i l l  

ope ra t e  from an in t e rconnec ted  dewar a l o n g s i d e  t he  c r y o s t a t .  

* The vacuum jacket  c o n s i s t s  of a 1 9  mm G-11 t o p  p l a t e ,  

s t a i n l e s s  s tee l  i n n e r  and o u t e r  c y l i n d e r s  and G-11 w a r m  bore 

tubes  f o r  each magnet. M u l t i l a y e r  i n s u l a t i o n  i s  used 

throughout t h e  c r y o s t a t .  Except f o r  t h e  magnet bore a r e a s ,  

there a re  s e p a r a t e  2 c m  t h i c k  l a y e r s  on e i the r  s ide  of t h e  

copper vapor-cooled s h i e l d .  Ver t i ca l  p o r t i o n s  of t h e  s h i e l d  
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are conduction cooled from the bottom and are excluded from 

the magnet bores and area above them. 

* The cryostat is supported from 5 long G-11 tubes plus three 

detachable radial supports which are only needed for ship- 

ping. The individual legs are 25.4 cm ID with 0.51 mm walls 

and 76 cm long. Attachment of the legs to the warm bottom 

plate is by pins which reduce cooldown bending moments and 

height adjustment is by means of shims. 

* Warm bores are provided for each magnet and for the center 

of the array for structural purposes. These cold and warm 

tubes reduce the spans of the top plates which permits them 

to be considerably thinner than they would be otherwise. 

Through members for the inner container provide tension 

support for the 30 psia (0.207 MPa) internal design pressure 

and the warm through members serve as posts to support 

14.7 psia (0.101 MPa) external atmospheric pressure. 

* Figure VII-2 indicates location of components in the 

cryostat without attempting to show structural details. 

Specifically shown are the inside and outside diameter of 

each magnet and related warm bore tube, cold and warm inner 

and outer cylinders and the location of the five vertical 

support legs. Dimensions are preliminary and are subject to 

change. In particular, the outer cold cylinder fits very 

close to the magnet outside diameters and its radius may 
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need to be increased from 1 to 2 cm. In this case, a 

corresponding increase in the vacuum jacket radius is also 

required. 

* The cryogenic system schematic is shown in Fig. VII-3. 

sketch shows a single magnet and one of ten leads and the 

related control systems. 

level maintenance with a dump valve to prevent warm vapor 

from entering the cryostat, shield cooling with a flow 

controller and a flow controller for each lead. These flow 

controllers are necessary to properly proportion flow before 

the remainder is vented. During magnet operation, eddy 

current heating creates more helium vapor than the leads and 

shield can utilize and the excess must be vented to avoid 

over-pressurizing the cryostat. 

This 

Controls include automatic liquid 

Thermal design of the cryogenic system is preliminary. 

Idling helium consumption is about 4 liters/hr for the cryostat 

plus 4.25 for the leads at zero current for a total of 8.25 

liters per hour. Helium consumption increases by about 250 

liters per hour at full power to a total of about 2 6 0  liters per 

hour. (Neither figure includes dewar or transfer line losses 

which should run less than 10% of actual consumption.) Opera- 

tional planning has not been given serious thought, but it 

appears that the system can be supported by commercial 500 or 

1000 liter dewars if an occasional interruption can be tolerated. 

, 
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